Cortana Intelligence Suite: Big Data and Advanced Analytics

In this post we will discuss reference architecture for Big Data and Advanced Analytics using Cortana Intelligence Suite. The architecture can be relevant for organizations looking to fully manage big data and advanced analytics to transform all enterprise information into intelligent action. This will allow to take action ahead of your competitors by going beyond looking in the rearview mirror to predicting what’s next.

In general, in such solutions you use relational and semi-structured data from business and custom applications, and also semi-structured or unstructured data from sensors, devices, web sites, social networks and other sources.

Big Data flow

Big Data flow includes following steps:

  • Ingestions of data, which can be based on bulk mode or event-based/real-time.
  • Processing data to prepare for storage.
  • Storing data in relational or unstructured storage.
  • Processing data for analytics like data aggregation, complex calculations, predictive or statistical modeling etc.
  • Visualizing data and data discovery using BI tools or custom applications.

big-data-flow

Big Data Reference Architecture

Big Data Reference architecture represents most important components and data flows, allowing to do following.

  • Track Azure data (Azure Website generating web logs) and store in ADLS
  • Track real-time data from IOT Suite: collect data from IOT Suite in permanent store (ADLS)
  • Run Machine Learning through R Server for HDInsight to find patterns in data
  • Show results in BI tools (Power BI)

big-data-ra

There are lot of different options to store data, process data and for machine learning. You may use Big Data and Machine Learning decision trees as a first help to choose most relevant components for your solution. (I will also write about information management components like Azure Data Factory, Azure Data Catalog, Sqoop, Pig, Oozie etc. in one of next posts).

Example of Big Data Solution

To show you simple example of Big Data architecture we will use following artificial scenario.

  • AdventureWorks Travel (AWT) provides concierge services for business travelers. In an increasingly crowded market, they are always looking for ways to differentiate themselves and provide added value to their corporate customers.
  • They are looking to pilot a web-app that their internal customer service agents can use to provide additional information useful to the traveler during the flight booking process. They want to enable their agents to enter in the flight information and produce a prediction as to if the departing flight will encounter a 15 minute or longer delay, taking into account the weather forecasted for the departure hour.
  • Data platform team prefers to use open source technologies for data processing tasks.
  • Developers will need an easy way to create prediction experiments.

Here is example of architecture allowing to solve the scenario described above. Selected components of Cortana Intelligence Suite are highlighted.

cis-example

Demonstration of described solution is available in MTC Studio webcast: 2016-12-08 | Cortana Intelligence Suite: Big Data and Advanced Analytics.

 

Additional materials

Machine Learning @ 1 million predictions per second and more

Watch recordings of keynote and session previews of  Microsoft Machine Learning & Data Science Summit 2016 on the latest Big Data, Machine Learning, Artificial Intelligence, and Open Source techniques and technologies.

Some take-aways from the keynote:

  1. Combination of in-memory technologies and in-database analytics with R at scale using SQL Server 2016 can make 1 million fraud predictions per second.
  2. U-SQL in combination with Cognitive APIs and Azure ML can significantly extend datasets to make possible to analyze large volumes of images (different objects and complexity) and text (subjects, key phrases, sentiments, story).
  3. In future Azure Data Lake Analytics will support Hive and Spark.
  4. Microsoft ResNet (solutions for Deep Learning) is built using 152 neural network layers.
  5. Azure N-series Virtual Machines with GPUs to be used for Deep Learning are available in preview. For example, Tesla K80 delivers 4992 CUDA cores with a dual GPU design, up to 2.91 Teraflops of double-precision and up to 8.93 Teraflops of single-precision performance.

Case Studies:

  1. Student Drop-Out Prediction Service in Indian schools uses Azure ML.
  2. PROS used Azure and R in SQL Server for airlines to recommend prices in milliseconds. For another customer they moved R-based solution to SQL Server 2016 to generate renewals automatically “faster in a factor of a hundred”.
  3. Dyxia used combination of Microsoft Band, MS Health application, Azure IoT Hub, Stream Analytics, Power BI, Machine Learning and other services to monitor and predict anxiety of children with autism.
  4. eSmart Systems created Connected Drone solution combining drones with Deep Learning in Azure to automate inspections of power lines.
  5. CrowdFlower use crowd sourcing (Human-in-the-Loop) to train machine learning models for non-confident predictions.

Below there are some screenshots from the keynote.

intelligence

in-mem-r-sql

mln-predictions

war-and-peace

deep-learning

List of available recordings: